Regression unable to use polynomial label(or any label)

green_duckgreen_duck MemberPosts:4Newbie
Hello all,

new here and new to RM(which will be made obvious shortly). So, i'm trying to do a simple regression analysis based on a attribute(label) as(-1,0,1). I've followed the steps provided to me, but every time I input a regression operator, I get an error saying the operator cannot handle polynomial or numerical labels. I'm stumped.

Any help would be greatly appreciated! Thanks!

Best Answers

  • lionelderkrikorlionelderkrikor Moderator, RapidMiner Certified Analyst, MemberPosts:1,195Unicorn
    Solution Accepted
    @green_duck,

    In attached file, the working process.
    How said previously, you have a classification problem, thus you need a classifier model (Here I used aNaive Bayesmodel).
    TheLinear Modelyou used is dedicated to regression task(s) and thus raised an error in your case.

    To go further and to find the best model for your use case, I advice you to use theAuto-Modeltool : Click onAuto-Model, submit your data, choosePredictand select your label attribute (in your case "sentiment") and then follow the indications.

    Good luck !

    Hope this helps,

    Regards,

    Lionel


    green_duck

Answers

  • lionelderkrikorlionelderkrikor Moderator, RapidMiner Certified Analyst, MemberPosts:1,195Unicorn
    Hi@green_duck,

    If your attribute(label) has (-1,0,1) as values, it is a classification problem and not a regression problem.
    A regression problem is characterized by a continuous attribute(label).
    Can you provide your process and your data in order we can fix your error ?

    Regards,

    Lionel
  • green_duckgreen_duck MemberPosts:4Newbie
    Hi Lionel,

    Thanks for getting back to me - I had a feeling this may have been the case as I was also attempting to use cross-validation but I couldn't get the operator to work either. I've attached the data(should've done this earlier).

    XML下面:

    <关键参数="logverbosity" value="init"/>
    <关键参数="random_seed" value="2001"/>
    <关键参数="send_mail" value="never"/>
    <关键参数="notification_email" value=""/>
    <关键参数="process_duration_for_mail" value="30"/>
    <关键参数="encoding" value="SYSTEM"/>
    <关键参数="repository_entry" value="data/Tweets_sequence"/>
    <关键参数="attribute_filter_type" value="all"/>
    <关键参数="attribute" value="sentiment"/>
    <关键参数="attributes" value="1_word|2_word|3_word|4_word|5_word|6_word|7_word|8_word|9_word|10_word|11_word|12_word|13_word|14_word|15_word|16_word|17_word|18_word|19_word|20_word|21_word|22_word|23_word|24_word|25_word|26_word|27_word|28_word|29_word|30_word"/>
    <关键参数="use_except_expression" value="false"/>
    <关键参数="value_type" value="attribute_value"/>
    <关键参数="use_value_type_exception" value="false"/>
    <关键参数="except_value_type" value="time"/>
    <关键参数="block_type" value="attribute_block"/>
    <关键参数="use_block_type_exception" value="false"/>
    <关键参数="except_block_type" value="value_matrix_row_start"/>
    <关键参数="invert_selection" value="false"/>
    <关键参数="include_special_attributes" value="true"/>
    <关键参数="attribute_filter_type" value="single"/>
    <关键参数="attribute" value="sentiment"/>
    <关键参数="attributes" value=""/>
    <关键参数="use_except_expression" value="false"/>
    <关键参数="value_type" value="numeric"/>
    <关键参数="use_value_type_exception" value="false"/>
    <关键参数="except_value_type" value="real"/>
    <关键参数="block_type" value="value_series"/>
    <关键参数="use_block_type_exception" value="false"/>
    <关键参数="except_block_type" value="value_series_end"/>
    <关键参数="invert_selection" value="false"/>
    <关键参数="include_special_attributes" value="false"/>
    <关键参数="attribute_name" value="sentiment"/>
    <关键参数="target_role" value="label"/>
    <关键参数="ratio" value="0.8"/>
    <关键参数="ratio" value="0.2"/>
    <关键参数="sampling_type" value="shuffled sampling"/>
    <关键参数="use_local_random_seed" value="false"/>
    <关键参数="local_random_seed" value="1992"/>
    <连接from_op = "选择属性”from_port = "前女友ample set output" to_op="Numerical to Polynominal" to_port="example set input"/>
    <关键参数="feature_selection" value="M5 prime"/>
    <关键参数="alpha" value="0.05"/>
    <关键参数="max_iterations" value="10"/>
    <关键参数="forward_alpha" value="0.05"/>
    <关键参数="backward_alpha" value="0.05"/>
    <关键参数="eliminate_colinear_features" value="true"/>
    <关键参数="min_tolerance" value="0.05"/>
    <关键参数="use_bias" value="true"/>
    <关键参数="ridge" value="1.0E-8"/>
    <关键参数="create_view" value="false"/>
    <关键参数="use_example_weights" value="true"/>

  • green_duckgreen_duck MemberPosts:4Newbie
    @lionelderkrikor

    Thank you so much! This was very helpful - Just have one last question - are there any deep learning models(NNs) that you would suggest for this same dataset?
Sign InorRegisterto comment.